/****************************************************************************** Copyright (C) 2013 by Hugh Bailey This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . ******************************************************************************/ #include #include #include "../util/threading.h" #include "../util/darray.h" #include "../util/circlebuf.h" #include "../util/platform.h" #include "../util/profiler.h" #include "audio-io.h" #include "audio-resampler.h" extern profiler_name_store_t *obs_get_profiler_name_store(void); /* #define DEBUG_AUDIO */ #define nop() do {int invalid = 0;} while(0) struct audio_input { struct audio_convert_info conversion; audio_resampler_t *resampler; audio_output_callback_t callback; void *param; }; static inline void audio_input_free(struct audio_input *input) { audio_resampler_destroy(input->resampler); } struct audio_mix { DARRAY(struct audio_input) inputs; float buffer[MAX_AUDIO_CHANNELS][AUDIO_OUTPUT_FRAMES]; }; struct audio_output { struct audio_output_info info; size_t block_size; size_t channels; size_t planes; pthread_t thread; os_event_t *stop_event; bool initialized; audio_input_callback_t input_cb; void *input_param; pthread_mutex_t input_mutex; struct audio_mix mixes[MAX_AUDIO_MIXES]; }; /* ------------------------------------------------------------------------- */ /* the following functions are used to calculate frame offsets based upon * timestamps. this will actually work accurately as long as you handle the * values correctly */ static inline double ts_to_frames(const audio_t *audio, uint64_t ts) { double audio_offset_d = (double)ts; audio_offset_d /= 1000000000.0; audio_offset_d *= (double)audio->info.samples_per_sec; return audio_offset_d; } static inline double positive_round(double val) { return floor(val+0.5); } static int64_t ts_diff_frames(const audio_t *audio, uint64_t ts1, uint64_t ts2) { double diff = ts_to_frames(audio, ts1) - ts_to_frames(audio, ts2); return (int64_t)positive_round(diff); } static int64_t ts_diff_bytes(const audio_t *audio, uint64_t ts1, uint64_t ts2) { return ts_diff_frames(audio, ts1, ts2) * (int64_t)audio->block_size; } /* ------------------------------------------------------------------------- */ static inline uint64_t min_uint64(uint64_t a, uint64_t b) { return a < b ? a : b; } static inline size_t min_size(size_t a, size_t b) { return a < b ? a : b; } #ifndef CLAMP #define CLAMP(val, minval, maxval) \ ((val > maxval) ? maxval : ((val < minval) ? minval : val)) #endif static bool resample_audio_output(struct audio_input *input, struct audio_data *data) { bool success = true; if (input->resampler) { uint8_t *output[MAX_AV_PLANES]; uint32_t frames; uint64_t offset; memset(output, 0, sizeof(output)); success = audio_resampler_resample(input->resampler, output, &frames, &offset, (const uint8_t *const *)data->data, data->frames); for (size_t i = 0; i < MAX_AV_PLANES; i++) data->data[i] = output[i]; data->frames = frames; data->timestamp -= offset; } return success; } static inline void do_audio_output(struct audio_output *audio, size_t mix_idx, uint64_t timestamp, uint32_t frames) { struct audio_mix *mix = &audio->mixes[mix_idx]; struct audio_data data; pthread_mutex_lock(&audio->input_mutex); for (size_t i = mix->inputs.num; i > 0; i--) { struct audio_input *input = mix->inputs.array+(i-1); for (size_t i = 0; i < audio->planes; i++) data.data[i] = (uint8_t*)mix->buffer[i]; data.frames = frames; data.timestamp = timestamp; if (resample_audio_output(input, &data)) input->callback(input->param, mix_idx, &data); } pthread_mutex_unlock(&audio->input_mutex); } static inline void clamp_audio_output(struct audio_output *audio, size_t bytes) { size_t float_size = bytes / sizeof(float); for (size_t mix_idx = 0; mix_idx < MAX_AUDIO_MIXES; mix_idx++) { struct audio_mix *mix = &audio->mixes[mix_idx]; /* do not process mixing if a specific mix is inactive */ if (!mix->inputs.num) continue; for (size_t plane = 0; plane < audio->planes; plane++) { float *mix_data = mix->buffer[plane]; float *mix_end = &mix_data[float_size]; while (mix_data < mix_end) { float val = *mix_data; val = (val > 1.0f) ? 1.0f : val; val = (val < -1.0f) ? -1.0f : val; *(mix_data++) = val; } } } } static void input_and_output(struct audio_output *audio, uint64_t audio_time, uint64_t prev_time) { size_t bytes = AUDIO_OUTPUT_FRAMES * audio->block_size; struct audio_output_data data[MAX_AUDIO_MIXES]; uint32_t active_mixes = 0; uint64_t new_ts = 0; bool success; memset(data, 0, sizeof(data)); #ifdef DEBUG_AUDIO blog(LOG_DEBUG, "audio_time: %llu, prev_time: %llu, bytes: %lu", audio_time, prev_time, bytes); #endif /* get mixers */ pthread_mutex_lock(&audio->input_mutex); for (size_t i = 0; i < MAX_AUDIO_MIXES; i++) { if (audio->mixes[i].inputs.num) active_mixes |= (1 << i); } pthread_mutex_unlock(&audio->input_mutex); /* clear mix buffers */ for (size_t mix_idx = 0; mix_idx < MAX_AUDIO_MIXES; mix_idx++) { struct audio_mix *mix = &audio->mixes[mix_idx]; memset(mix->buffer[0], 0, AUDIO_OUTPUT_FRAMES * MAX_AUDIO_CHANNELS * sizeof(float)); for (size_t i = 0; i < audio->planes; i++) data[mix_idx].data[i] = mix->buffer[i]; } /* get new audio data */ success = audio->input_cb(audio->input_param, prev_time, audio_time, &new_ts, active_mixes, data); if (!success) return; /* clamps audio data to -1.0..1.0 */ clamp_audio_output(audio, bytes); /* output */ for (size_t i = 0; i < MAX_AUDIO_MIXES; i++) do_audio_output(audio, i, new_ts, AUDIO_OUTPUT_FRAMES); } static void *audio_thread(void *param) { struct audio_output *audio = param; size_t rate = audio->info.samples_per_sec; uint64_t samples = 0; uint64_t start_time = os_gettime_ns(); uint64_t prev_time = start_time; uint64_t audio_time = prev_time; uint32_t audio_wait_time = (uint32_t)(audio_frames_to_ns(rate, AUDIO_OUTPUT_FRAMES) / 1000000); os_set_thread_name("audio-io: audio thread"); const char *audio_thread_name = profile_store_name(obs_get_profiler_name_store(), "audio_thread(%s)", audio->info.name); while (os_event_try(audio->stop_event) == EAGAIN) { uint64_t cur_time; os_sleep_ms(audio_wait_time); profile_start(audio_thread_name); cur_time = os_gettime_ns(); while (audio_time <= cur_time) { samples += AUDIO_OUTPUT_FRAMES; audio_time = start_time + audio_frames_to_ns(rate, samples); input_and_output(audio, audio_time, prev_time); prev_time = audio_time; } profile_end(audio_thread_name); profile_reenable_thread(); } return NULL; } /* ------------------------------------------------------------------------- */ static size_t audio_get_input_idx(const audio_t *audio, size_t mix_idx, audio_output_callback_t callback, void *param) { const struct audio_mix *mix = &audio->mixes[mix_idx]; for (size_t i = 0; i < mix->inputs.num; i++) { struct audio_input *input = mix->inputs.array+i; if (input->callback == callback && input->param == param) return i; } return DARRAY_INVALID; } static inline bool audio_input_init(struct audio_input *input, struct audio_output *audio) { if (input->conversion.format != audio->info.format || input->conversion.samples_per_sec != audio->info.samples_per_sec || input->conversion.speakers != audio->info.speakers) { struct resample_info from = { .format = audio->info.format, .samples_per_sec = audio->info.samples_per_sec, .speakers = audio->info.speakers }; struct resample_info to = { .format = input->conversion.format, .samples_per_sec = input->conversion.samples_per_sec, .speakers = input->conversion.speakers }; input->resampler = audio_resampler_create(&to, &from); if (!input->resampler) { blog(LOG_ERROR, "audio_input_init: Failed to " "create resampler"); return false; } } else { input->resampler = NULL; } return true; } bool audio_output_connect(audio_t *audio, size_t mi, const struct audio_convert_info *conversion, audio_output_callback_t callback, void *param) { bool success = false; if (!audio || mi >= MAX_AUDIO_MIXES) return false; pthread_mutex_lock(&audio->input_mutex); if (audio_get_input_idx(audio, mi, callback, param) == DARRAY_INVALID) { struct audio_mix *mix = &audio->mixes[mi]; struct audio_input input; input.callback = callback; input.param = param; if (conversion) { input.conversion = *conversion; } else { input.conversion.format = audio->info.format; input.conversion.speakers = audio->info.speakers; input.conversion.samples_per_sec = audio->info.samples_per_sec; } if (input.conversion.format == AUDIO_FORMAT_UNKNOWN) input.conversion.format = audio->info.format; if (input.conversion.speakers == SPEAKERS_UNKNOWN) input.conversion.speakers = audio->info.speakers; if (input.conversion.samples_per_sec == 0) input.conversion.samples_per_sec = audio->info.samples_per_sec; success = audio_input_init(&input, audio); if (success) da_push_back(mix->inputs, &input); } pthread_mutex_unlock(&audio->input_mutex); return success; } void audio_output_disconnect(audio_t *audio, size_t mix_idx, audio_output_callback_t callback, void *param) { if (!audio || mix_idx >= MAX_AUDIO_MIXES) return; pthread_mutex_lock(&audio->input_mutex); size_t idx = audio_get_input_idx(audio, mix_idx, callback, param); if (idx != DARRAY_INVALID) { struct audio_mix *mix = &audio->mixes[mix_idx]; audio_input_free(mix->inputs.array+idx); da_erase(mix->inputs, idx); } pthread_mutex_unlock(&audio->input_mutex); } static inline bool valid_audio_params(const struct audio_output_info *info) { return info->format && info->name && info->samples_per_sec > 0 && info->speakers > 0; } int audio_output_open(audio_t **audio, struct audio_output_info *info) { struct audio_output *out; pthread_mutexattr_t attr; bool planar = is_audio_planar(info->format); if (!valid_audio_params(info)) return AUDIO_OUTPUT_INVALIDPARAM; out = bzalloc(sizeof(struct audio_output)); if (!out) goto fail; memcpy(&out->info, info, sizeof(struct audio_output_info)); out->channels = get_audio_channels(info->speakers); out->planes = planar ? out->channels : 1; out->input_cb = info->input_callback; out->input_param= info->input_param; out->block_size = (planar ? 1 : out->channels) * get_audio_bytes_per_channel(info->format); if (pthread_mutexattr_init(&attr) != 0) goto fail; if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE) != 0) goto fail; if (pthread_mutex_init(&out->input_mutex, &attr) != 0) goto fail; if (os_event_init(&out->stop_event, OS_EVENT_TYPE_MANUAL) != 0) goto fail; if (pthread_create(&out->thread, NULL, audio_thread, out) != 0) goto fail; out->initialized = true; *audio = out; return AUDIO_OUTPUT_SUCCESS; fail: audio_output_close(out); return AUDIO_OUTPUT_FAIL; } void audio_output_close(audio_t *audio) { void *thread_ret; if (!audio) return; if (audio->initialized) { os_event_signal(audio->stop_event); pthread_join(audio->thread, &thread_ret); } for (size_t mix_idx = 0; mix_idx < MAX_AUDIO_MIXES; mix_idx++) { struct audio_mix *mix = &audio->mixes[mix_idx]; for (size_t i = 0; i < mix->inputs.num; i++) audio_input_free(mix->inputs.array+i); da_free(mix->inputs); } os_event_destroy(audio->stop_event); bfree(audio); } const struct audio_output_info *audio_output_get_info(const audio_t *audio) { return audio ? &audio->info : NULL; } bool audio_output_active(const audio_t *audio) { if (!audio) return false; for (size_t mix_idx = 0; mix_idx < MAX_AUDIO_MIXES; mix_idx++) { const struct audio_mix *mix = &audio->mixes[mix_idx]; if (mix->inputs.num != 0) return true; } return false; } size_t audio_output_get_block_size(const audio_t *audio) { return audio ? audio->block_size : 0; } size_t audio_output_get_planes(const audio_t *audio) { return audio ? audio->planes : 0; } size_t audio_output_get_channels(const audio_t *audio) { return audio ? audio->channels : 0; } uint32_t audio_output_get_sample_rate(const audio_t *audio) { return audio ? audio->info.samples_per_sec : 0; }